Support
icon_0328_cc_gen_hmr_bacteria-s

DNA Double-Strand Break Repair by Non-Homologous End Joining

DNA double-strand breaks (DSBs) are among the most severe types of DNA damage, posing a significant threat to genomic stability. One key defense mechanism is non-homologous end joining (NHEJ), a process that quickly repairs these breaks and helps prevent cancer onset.

DNA Double-Strand Break Repair by Non-Homologous End Joining

Pathway Summary

DNA within eukaryotic cells is continually exposed to DNA damaging agents. These include UV radiation, natural and man-made mutagenic chemicals, mechanical stress on the chromosomes, or by processes such as redox cycling by heavy metal ions and radiomimetic drugs. Of the various forms of damage that are inflicted by these mutagens, probably the most dangerous is the DNA double-strand break (DSB). DSB are generated when the two complementary strands of the double helix are broken simultaneously at sites that are sufficiently close to one another that base pairing and chromatin structure are insufficient to keep the two DNA ends juxtaposed. As a consequence, the ends generated by a DSB are liable to become physically dissociated from one another, making repair difficult and providing an opportunity for inappropriate recombination with other sites in the genome. This inappropriate recombination results in chromosomal instabilities leading to deregulated gene expression and carcinogenesis. To counteract the detrimental effects of these potent lesions, cells have evolved two distinct pathways of DSB repair, homologous recombination (HR) and hon-homologous end joining (NHEJ). NHEJ directly rejoins DSB, whereas HR utilizes a sister chromatid or homologous chromosome as a template for DNA resynthesis and rejoining. Both pathways are highly conserved throughout eukaryotic evolution but their relative importance differs from one organism to another. Simple eukaryotes such as the yeast S.cerevisiae and S.pombe rely mainly on HR to repair radiation-induced DSB. In contrast, in mammals the NHEJ pathway predominates in many stages of the cell cycle, particularly in G0 and G1.DNA DSB are processed exonucleolytically, yielding 3' overhanging ss-tails of about 600 bases. NHEJ rejoins the two broken ends directly and generally leads to small deletions of DNA sequence. The activity of the Ku70/Ku80 heterodimeric protein is essential to the NHEJ pathway. The Ku heterodimer initiates NHEJ by binding to the free DNA ends and recruiting other NHEJ factors such as DNA-PK, XRCC4 and DNA ligase IV. DNA-PK becomes activated upon DNA binding, and phosphorylates a number of substrates including p53, Ku and the DNA ligase IV cofactor XRCC4. Phosphorylation of these factors further facilitates the repair process. In addition to Ku and DNA ligase IV, the Rad50, MRE11 and NBS1 genes are also involved in NHEJ. Because the ends of most DSB generated by genotoxic agents are damaged and unable to be directly ligated, they often have to undergo limited processing by nucleases and/or polymerases before NHEJ can proceed. The MRE11-Rad50-NBS1 complex, which contains exonuclease, endonuclease and helicase activities, functions in NHEJ particularly if the DNA ends require processing before ligation. Other nucleases are involved in addition to the MRE11 complex, such as Artemis. The final step in NHEJ repair involves ligation of the DNA ends by DNA ligase IV in a complex that also includes XRCC4 and Ku.

Products related to DNA Double-Strand Break Repair by Non-Homologous End Joining

Explore products related to DNA Double-Strand Break Repair by Non-Homologous End Joining
GeneGlobe ID: PAHS-029Z | Cat. No.: 330231 | RT2 Profiler PCR Arrays
RT² Profiler™ PCR Array Human DNA Damage Signaling Pathway
RT2 Profiler PCR Array
Product Specification
Copy Details
GeneGlobe ID: UPHS-042Z | Cat. No.: 249955 | QuantiNova LNA Probe PCR Focus Panels
QuantiNova LNA Probe PCR Focus Panel Human DNA Repair
QuantiNova LNA Probe PCR Focus Panel
Product Specification
Copy Details
GeneGlobe ID: SBHS-029Z | Cat. No.: 249950 | QuantiNova LNA PCR Focus Panels
QuantiNova LNA PCR Focus Panel Human DNA Damage Signaling Pathway
QuantiNova LNA PCR Focus Panel
Product Specification
Copy Details
GeneGlobe ID: PAHS-042Z | Cat. No.: 330231 | RT2 Profiler PCR Arrays
RT² Profiler™ PCR Array Human DNA Repair
RT2 Profiler PCR Array
Product Specification
Copy Details
GeneGlobe ID: UPHS-029Z | Cat. No.: 249955 | QuantiNova LNA Probe PCR Focus Panels
QuantiNova LNA Probe PCR Focus Panel Human DNA Damage Signaling Pathway
QuantiNova LNA Probe PCR Focus Panel
Product Specification
Copy Details
GeneGlobe ID: SBHS-042Z | Cat. No.: 249950 | QuantiNova LNA PCR Focus Panels
QuantiNova LNA PCR Focus Panel Human DNA Repair
QuantiNova LNA PCR Focus Panel
Product Specification
Copy Details

Didn't find what you're looking for?

Discover other products relevant to this gene list with our Panel Finder. Check it out.

Frequently Asked Questions

What are DNA double-strand breaks, and how do they occur?

Double-strand breaks (DSBs) are severe forms of DNA damage in which both strands of the DNA double helix are broken. They can result from external factors like ionizing radiation (from medical imaging, environmental sources, or cosmic rays), exposure to chemical mutagens (such as chemotherapeutic drugs and environmental pollutants), and lifestyle factors like smoking. DSBs can also result from internal sources such as replication stress, reactive oxygen species generated during cellular metabolism, and mechanical stress during cell division. In the immune system, DSBs are intentionally created during processes like V(D)J recombination for antibody diversity.

Why is the repair of DNA double-strand breaks so essential?

Repairing double-strand breaks is crucial for maintaining genomic stability. Unrepaired DSBs can lead to chromosomal rearrangements, mutations, and even cell death. These genomic alterations can disrupt vital genetic information and potentially lead to diseases like cancer. Efficient DSB repair is essential for preventing these adverse outcomes and ensuring the proper functioning of cells.

What is non-homologous end joining?

Non-Homologous End Joining (NHEJ) is a primary pathway for repairing DSBs in cells. It is crucial because it operates throughout the cell cycle, unlike other repair mechanisms limited to specific phases. NHEJ is particularly important in repairing DSBs caused by ionizing radiation and other random DNA breaks. It works by directly joining the broken DNA ends, a process that is essential for maintaining genomic integrity and preventing severe consequences like carcinogenesis.

What are the key players in the NHEJ pathway?
  • Ku70/Ku80 Heterodimer: This protein complex is the first to respond to a DSB. It initiates the repair process by recognizing and binding to the DNA break. The Ku70/Ku80 heterodimer also helps to protect the DNA ends from degradation and aligns them for subsequent repair steps.
  • DNA-Dependent Protein Kinase (DNA-PK): Once the Ku70/Ku80 complex is bound to the DNA, DNA-PK is recruited and activated. This kinase is central in coordinating the repair process, primarily by phosphorylating various substrates. These phosphorylation events are crucial for facilitating the next stages of the repair pathway.
  • Artemis Nuclease: Artemis nuclease is involved in processing the DNA ends to make them suitable for ligation. It plays a key role in opening hairpin structures and trimming damaged nucleotides, ensuring the DNA ends are properly prepared for the final ligation step.
  • DNA Polymerases Mu (Pol ÎĽ) and Lambda (Pol λ): Both Pol ÎĽ and Pol λ share the ability to perform template-independent DNA synthesis, which is crucial in NHEJ where a complementary DNA strand may not be available. These polymerases are particularly important for gap-filling during the repair process, ensuring that any gaps created during DNA end-processing are accurately filled. Their activity contributes significantly to the efficiency and fidelity of the NHEJ repair mechanism.
  • XRCC4-DNA Ligase IV Complex: This complex is responsible for the actual ligation of the DNA ends, a critical step in the repair process. DNA Ligase IV, in association with XRCC4, performs the final rejoining of the broken DNA strands, effectively restoring the integrity of the DNA molecule.
What happens if the NHEJ repair pathway doesn't work correctly?

If NHEJ is dysfunctional, cells can experience genomic instability, which increases the risk of chromosomal aberrations, translocations, and mutations. This genomic instability is a hallmark of many cancers. Additionally, defects in NHEJ components are linked to genetic disorders such as severe combined immunodeficiency (SCID). Therefore, proper functioning of NHEJ is crucial for preventing these adverse health outcomes.

Mending the Molecular Break: Unraveling the Role of Non-Homologous End Joining in DNA Repair